IoT Implementation Timeline

 
 

IoT Implementation Steps

Even if your business expectations on IoT projects are high and you can afford the technical tools and human resources, focusing on proofs of concept (PoCs), sandboxes, human resource alignment, pilots, and narrowing use cases for IoT deployments are advisable. This will enable you to learn from your mistakes and be encouraged by success.

 

Identify IoT objectives & IoT use cases suitable for your business

As with other digital transformation initiatives, IoT implementation starts with the identification of project objectives. It would be best if you determined what your organization wants to achieve through IoT technology. Each organization has different needs; some may aim to decrease operational costs while others target customer experience.

It may be hard to identify use cases that suit your business needs. IoT consulting companies help businesses understand IoT technology. Or you can check out our list of IoT applications based on company objectives, and create a roadmap to achieve your business goals.

Select necessary IoT components suitable for your use case

Hardware and software selection is a critical decision during implementation.  IoT projects involve various tools, and businesses need to be careful about these systems’ connectivity and interoperability. Required components in IoT implementation include

  • Sensors to collect data such as weight, volume, temperature, humidity, pressure, etc.

  • Edge gateways to serve as a network entry point for devices and sensors talking to cloud services

  • Communication protocols for machine to machine (M2M) communication like SigFox Zigbee, 6LoWPAN, etc.

  • IoT platforms to transmit information from a variety of hardware to the cloud and manage devices

  • Cloud data management and analytics software to transform generated data into insight.

Implementation & Prototyping

IoT requires a team that contains a mix of experts across IT and operations to work together. It would be best if you started implementation by building an IoT team that meets the requirements of selected use cases. Skills you may need during the IoT journey are listed below. However, this depends on the exact project. Many companies rely on turnkey IoT solutions and only need to oversee solution implementation which requires significantly less resources.

  • Industrial & embedded systems design

  • Electrical & mechanical knowledge

  • Back-end & front-end development

  • General technical expertise

A team with these skills can build IoT devices and implement the network; however, you need to enhance your team with data talent to make collected data useful.  Skills your IoT team may rely on after implementation are listed below:

  • Information systems expert to handle data storage

  • Data scientist to analyze the data gathered

  • Statistician to assist in data analysis and quality control.

Integrate IoT system with other advanced technologies

After sensors start collecting and storing data, businesses can introduce new technologies such as analytics, machine learning, and edge computing to IoT infrastructure.

For instance, cognitive IoT is the use of machine learning in combination with data generated by connected IoT devices and the actions those devices can perform. The growth of unstructured data collected from IoT devices exceeds that of structured data. Cognitive IoT technologies aim to understand and learn using both structured and unstructured data for training and continuous improvement.

Apply necessary security measurements

Data security and privacy are the businesses’ concerns. IoT security breaches are common and businesses need to inform their data security officer about IoT projects to ensure that data governance best practices are integrated into the project. If necessary, GDPR compliance should be considered. In addition, IoT security solutions can be integrated to minimize security breaches. Endpoint security, communication protocols, access control, encryption, and fraud management are some measures you can take to enhance data security and privacy.

Challenges during IoT implementation
Compatibility & Longevity

IoT infrastructure involves various tools, sensors, and devices, and each vendor is competing to become the standard. A successful implementation requires the integration of IoT components with existing systems. Some compatibility challenges are non-unified cloud services, lack of standardized M2M protocols, and diversities in firmware and operating systems among IoT devices. For example, as a transport mechanism between devices and hubs, there are ZigBee, Z-Wave, Wi-Fi, Bluetooth, and Bluetooth Low Energy (BTLE) protocols. This variety causes difficulties in implementation and requires the deployment of extra hardware and software when connecting devices.

Security issues

Though IoT projects provide different business opportunities, adding new devices to your network increases the risk of cyberattacks. According to studies, 57% of IoT devices are vulnerable to cybersecurity attacks.

 
Data storage issues

Once you deploy IoT systems, your database grows exponentially. To capture IoT data and perform analytics, organizations need high-capacity and high-speed storage along with advanced memory processing technologies.

Power management of IoT devices

Though there are IoT devices that work via AC power, industrial IoT involves devices that are located in extreme conditions, and they use their battery as their only power source. Companies should track when the battery of an IoT device needs to be recharged or replaced. Finding devices that conserve or produce power when not in use enables businesses to design a sustainable IoT system. Especially when a device is placed in a difficult place to access, battery replacements can be overwhelming.

Unstructured data processing that requires data cleaning

IoT sensors collect unstructured data that is difficult to use for analysis. Collected data may contain anomalies if the sensors’ environment or systems are not stable. It is important to identify such data quality issues to improve decision making.

Analytics challenges

IoT analytics is applications that help analyze data obtained by IoT sensors to make better and data-driven decisions. IoT analytics has specific challenges but common analytics challenges also apply for IoT implementation.